Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
2.
Cytokine ; 150: 155785, 2022 02.
Article in English | MEDLINE | ID: covidwho-1568622

ABSTRACT

SARS-CoV-2 and latent Mycobacterium tuberculosis infection are both highly co-prevalent in many parts of the globe. Whether exposure to SARS-CoV-2 influences the antigen specific immune responses in latent tuberculosis has not been investigated. We examined the baseline, mycobacterial antigen and mitogen induced cytokine and chemokine responses in latent tuberculosis (LTBI) individuals with or without SARS-CoV-2 seropositivity, LTBI negative individuals with SARS-CoV-2 seropositivity and healthy control (both LTBI and SARS-CoV-2 negative) individuals. Our results demonstrated that LTBI individuals with SARS-CoV-2 seropositivity (LTBI+/IgG +) were associated with increased levels of unstimulated and TB-antigen stimulated IFNγ, IL-2, TNFα, IL-17, IL-1ß, IL-6, IL-12, IL-4, CXCL1, CXCL9 and CXCL10 when compared to those without seropositivity (LTBI+/IgG-). In contrast, LTBI+/IgG+ individuals were associated with decreased levels of IL-5 and IL-10. No significant difference in the levels of cytokines/chemokines was observed upon mitogen stimulation between the groups. SARS-CoV-2 seropositivity was associated with enhanced unstimulated and TB-antigen stimulated but not mitogen stimulated production of cytokines and chemokines in LTBI+ compared to LTBI negative individuals. Finally, most of these significant differences were not observed when LTBI negative individuals with SARS-CoV-2 seropositivity and controls were examined. Our data clearly demonstrate that both baseline and TB - antigen induced cytokine responses are augmented in the presence of SARS-CoV-2 seropositivity, suggesting an augmenting effect of prior SARS-CoV-2 infection on the immune responses of LTBI individuals.


Subject(s)
COVID-19/complications , Cytokines/blood , Latent Tuberculosis/complications , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antigens, Bacterial/immunology , COVID-19/immunology , Chemokines/blood , Female , Humans , Immunocompromised Host , Immunoglobulin G/blood , Inflammation , Latent Tuberculosis/blood , Latent Tuberculosis/immunology , Lymphocyte Activation/drug effects , Male , Middle Aged , Phytohemagglutinins/pharmacology , Seroconversion
3.
Cells ; 10(12)2021 11 25.
Article in English | MEDLINE | ID: covidwho-1542428

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.


Subject(s)
Arachidonic Acids/therapeutic use , Endocannabinoids/therapeutic use , Gastrointestinal Microbiome , Gastrointestinal Tract/pathology , Lung/pathology , Polyunsaturated Alkamides/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/microbiology , Animals , Antimicrobial Peptides/metabolism , Arachidonic Acids/pharmacology , Butyrates/metabolism , Cecum/pathology , Cell Separation , Colon/drug effects , Colon/pathology , Discriminant Analysis , Dysbiosis/complications , Dysbiosis/microbiology , Endocannabinoids/pharmacology , Enterotoxins , Female , Gastrointestinal Tract/drug effects , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Pneumonia/drug therapy , Pneumonia/microbiology , Polyunsaturated Alkamides/pharmacology , Respiratory Distress Syndrome/complications , T-Lymphocytes/drug effects
5.
Cell Transplant ; 30: 9636897211054481, 2021.
Article in English | MEDLINE | ID: covidwho-1511642

ABSTRACT

Biological and cellular interleukin-6 (IL-6)-related therapies have been used to treat severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure, which prompted further exploration of the role of IL-6 in human umbilical cord mesenchymal stem cell (hUCMSC) therapy. Peripheral blood mononuclear cells (PBMCs) were responders cocultured with hUCMSCs or exogenous IL-6. A PBMC suppression assay was used to analyze the anti-inflammatory effects via MTT assay. The IL-6 concentration in the supernatant was measured using ELISA. The correlation between the anti-inflammatory effect of hUCMSCs and IL-6 levels and the relevant roles of IL-6 and IL-6 mRNA expression was analyzed using the MetaCore functional network constructed from gene microarray data. The location of IL-6 and IL-6 receptor (IL-6R) expression was further evaluated. We reported that hUCMSCs did not initially exert any inhibitory effect on PHA-stimulated proliferation; however, a potent inhibitory effect on PHA-stimulated proliferation was observed, and the IL-6 concentration reached approximately 1000 ng/mL after 72 hours. Exogenous 1000 ng/mL IL-6 inhibited PHA-stimulated inflammation but less so than hUCMSCs. The inhibitory effects of hUCMSCs on PHA-stimulated PBMCs disappeared after adding an IL-6 neutralizing antibody or pretreatment with tocilizumab (TCZ), an IL-6R antagonist. hUCMSCs exert excellent anti-inflammatory effects by inducing higher IL-6 levels, which is different from TCZ. High concentration of IL-6 cytokine secretion plays an important role in the anti-inflammatory effect of hUCMSC therapy. Initial hUCMSC therapy, followed by TCZ, seems to optimize the therapeutic potential to treat COVID-19-related acute respiratory distress syndrome (ARDS).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , Interleukin-6/biosynthesis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , Cells, Cultured , Coculture Techniques , Combined Modality Therapy , DNA, Complementary/genetics , Gene Expression Regulation/drug effects , Humans , Inflammation , Interleukin-6/genetics , Interleukin-6/pharmacology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/drug effects , Phytohemagglutinins/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/biosynthesis , Receptors, Interleukin-6/genetics , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Umbilical Cord/cytology
6.
J Cell Physiol ; 237(2): 1521-1531, 2022 02.
Article in English | MEDLINE | ID: covidwho-1490820

ABSTRACT

Mechanical forces can modulate the immune response, mostly described as promoting the activation of immune cells, but the role and mechanism of pathological levels of mechanical stress in lymphocyte activation have not been focused on before. By an ex vivo experimental approach, we observed that mechanical stressing of murine spleen lymphocytes with 50 mmHg for 3 h induced the nuclear localization of NFAT1, increased C-Jun, and increased the expression of early activation marker CD69 in resting CD8+ cells. Interestingly, 50 mmHg mechanical stressing induced the nuclear localization of NFAT1; but conversely decreased C-Jun and inhibited the expression of CD69 in lymphocytes under lipopolysaccharide or phorbol 12-myristate 13-acetate/ionomycin stimulation. Additionally, we observed similar changes trends when comparing RNA-seq data of hypertensive and normotensive COVID-19 patients. Our results indicate a biphasic effect of mechanical stress on lymphocyte activation, which provides insight into the variety of immune responses in pathologies involving elevated mechanical stress.


Subject(s)
Lymphocyte Activation/immunology , Stress, Mechanical , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/complications , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Comorbidity , Gene Expression Regulation/drug effects , Humans , Hypertension/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ion Channels/metabolism , Lectins, C-Type/metabolism , Lipopolysaccharides/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Male , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Protein Transport/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction/drug effects , Tetradecanoylphorbol Acetate/pharmacology
7.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: covidwho-1470894

ABSTRACT

Infection caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in many cases is accompanied by the release of a large amount of proinflammatory cytokines in an event known as "cytokine storm", which is associated with severe coronavirus disease 2019 (COVID-19) cases and high mortality. The excessive production of proinflammatory cytokines is linked, inter alia, to the enhanced activity of receptors capable of recognizing the conservative regions of pathogens and cell debris, namely TLRs, TREM-1 and TNFR1. Here we report that peptides derived from innate immunity protein Tag7 inhibit activation of TREM-1 and TNFR1 receptors during acute inflammation. Peptides from the N-terminal fragment of Tag7 bind only to TREM-1, while peptides from the C-terminal fragment interact solely with TNFR1. Selected peptides are capable of inhibiting the production of proinflammatory cytokines both in peripheral blood mononuclear cells (PBMCs) from healthy donors and in vivo in the mouse model of acute lung injury (ALI) by diffuse alveolar damage (DAD). Treatment with peptides significantly decreases the infiltration of mononuclear cells to lungs in animals with DAD. Our findings suggest that Tag7-derived peptides might be beneficial in terms of the therapy or prevention of acute lung injury, e.g., for treating COVID-19 patients with severe pulmonary lesions.


Subject(s)
Acute Lung Injury/pathology , Cytokines/chemistry , Peptides/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Acute Lung Injury/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Lung/pathology , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred ICR , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors
9.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: covidwho-1365116

ABSTRACT

The COVID-19 pandemic has spread worldwide, yet the role of antiviral T cell immunity during infection and the contribution of immune checkpoints remain unclear. By prospectively following a cohort of 292 patients with melanoma, half of which treated with immune checkpoint inhibitors (ICIs), we identified 15 patients with acute or convalescent COVID-19 and investigated their transcriptomic, proteomic, and cellular profiles. We found that ICI treatment was not associated with severe COVID-19 and did not alter the induction of inflammatory and type I interferon responses. In-depth phenotyping demonstrated expansion of CD8 effector memory T cells, enhanced T cell activation, and impaired plasmablast induction in ICI-treated COVID-19 patients. The evaluation of specific adaptive immunity in convalescent patients showed higher spike (S), nucleoprotein (N), and membrane (M) antigen-specific T cell responses and similar induction of spike-specific antibody responses. Our findings provide evidence that ICI during COVID-19 enhanced T cell immunity without exacerbating inflammation.


Subject(s)
COVID-19/immunology , Immune Checkpoint Inhibitors/immunology , Melanoma/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adaptive Immunity/drug effects , Adaptive Immunity/immunology , Aged , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/complications , COVID-19/virology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Memory/drug effects , Immunologic Memory/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Melanoma/complications , Melanoma/drug therapy , Middle Aged , Prospective Studies , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/virology
10.
Clin Immunol ; 231: 108828, 2021 10.
Article in English | MEDLINE | ID: covidwho-1363931

ABSTRACT

COVID-19 is characterized by a dysregulation of inflammatory cytokines ultimately resulting a cytokine storm that can result in significant morbidity and mortality. We developed an in-vitro assay using activated peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS) or CD3 + CD28 to examine secretion of cytokines from antigen presenting cells (APCs) and T cells, respectively, in donor patients with a history of COVID-19 (convalescent) and uninfected negative controls. We hypothesized that a novel antioxidant called Tempol may decrease cytokines from activated peripheral blood cells from both COVID-19 patients and normal donors. Preincubation of immune cells with Tempol resulted in a significant (P < 0.05) decrease in multiple T cell and APC-derived cytokines from both cells of COVID-19 (n = 7) and uninfected donors (n = 7). These preliminary results suggest that Tempol has strong in-vitro anti-cytokine activity and supports additional studies examining the use of Tempol for the treatment of COVID-19.


Subject(s)
Antioxidants/pharmacology , COVID-19/immunology , Cyclic N-Oxides/pharmacology , Lymphocyte Activation/drug effects , SARS-CoV-2 , T-Lymphocytes/drug effects , Adult , Aged , Antigen-Presenting Cells/metabolism , Antigens, Viral/metabolism , Cytokines/antagonists & inhibitors , Cytokines/drug effects , Female , Humans , Male , Middle Aged , Spin Labels , T-Lymphocytes/physiology
11.
Sci Immunol ; 6(59)2021 05 18.
Article in English | MEDLINE | ID: covidwho-1234280

ABSTRACT

Coronaviruses are a family of RNA viruses that cause acute and chronic diseases of the upper and lower respiratory tract in humans and other animals. SARS-CoV-2 is a recently emerged coronavirus that has led to a global pandemic causing a severe respiratory disease known as COVID-19 with significant morbidity and mortality worldwide. The development of antiviral therapeutics are urgently needed while vaccine programs roll out worldwide. Here we describe a diamidobenzimidazole compound, diABZI-4, that activates STING and is highly effective in limiting SARS-CoV-2 replication in cells and animals. diABZI-4 inhibited SARS-CoV-2 replication in lung epithelial cells. Administration of diABZI-4 intranasally before or even after virus infection conferred complete protection from severe respiratory disease in K18-ACE2-transgenic mice infected with SARS-CoV-2. Intranasal delivery of diABZI-4 induced a rapid short-lived activation of STING, leading to transient proinflammatory cytokine production and lymphocyte activation in the lung associated with inhibition of viral replication. Our study supports the use of diABZI-4 as a host-directed therapy which mobilizes antiviral defenses for the treatment and prevention of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , COVID-19 Drug Treatment , COVID-19/prevention & control , Membrane Proteins/agonists , SARS-CoV-2/drug effects , A549 Cells , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line , Chlorocebus aethiops , Enzyme Activation/drug effects , Epithelial Cells/virology , Female , Humans , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects , Male , Membrane Proteins/metabolism , Mice , Mice, Knockout , SARS-CoV-2/growth & development , Vero Cells , Virus Replication/drug effects
12.
Int J Infect Dis ; 106: 33-35, 2021 May.
Article in English | MEDLINE | ID: covidwho-1144720

ABSTRACT

As of October 2020, there is still no specific drug to treat COVID-19 as it rages worldwide. Favipiravir, indicated for the treatment of new and re-emerging influenza infections, has been suggested to be effective against SARS-CoV-2, although this is not yet fully validated. We administered favipiravir to a 64-year-old female patient with COVID-19. Her symptoms resolved quickly after the start of treatment, with reduction of SARS-CoV-2 viral load, but she developed a fever again on day 12. Since the fever was relieved by discontinuation of favipiravir, and based on positive results with a drug-induced lymphocyte stimulation test, we diagnosed her with favipiravir-induced drug fever. A decrease in the serum concentration of favipiravir was observed along with resolution of the fever. The present case suggests that drug fever should be considered in the differential diagnosis of relapsing fever episodes in COVID-19 patients receiving favipiravir.


Subject(s)
Amides/adverse effects , COVID-19 Drug Treatment , COVID-19/immunology , Fever/chemically induced , Lymphocyte Activation/drug effects , Pyrazines/adverse effects , Amides/pharmacology , Amides/therapeutic use , COVID-19/diagnosis , Female , Humans , Middle Aged , Pyrazines/pharmacology , Pyrazines/therapeutic use , Viral Load/drug effects
13.
J Physiol Pharmacol ; 71(5)2020 Oct.
Article in English | MEDLINE | ID: covidwho-1134681

ABSTRACT

In this study, the in vitro effects of 1-(4-dimethylaminobenzylidene)-2-(2-hydroxybenzylidene) hydrazone (L1) and its corresponding copper complex [Cu(L1)], synthesized in our laboratory, were investigated on the proliferative responses, Th1 (interleukin-2 (IL-2), interferon-γ (INFγ)) and Th2 (IL-4) cytokine secretion, adenosine triphosphate (ATP) levels and intracellular redox status of T lymphocytes submitted to H2O2/FeSO4-mediated oxidative stress. T cells were isolated on histopaque density gradient by differential centrifugation, and were cultured with the mitogen concanavalin A (Con A), free radical generator (H2O2/FeSO4) and with different concentrations of L1 and [Cu(L1)] (1 - 100 µM). Proliferation (MTT assay), cytokines (Elisa kits), ATP levels, cytotoxic effect (micronucleus test) and oxidative markers (glutathione, catalase, superoxide dismutase, hydroperoxide and carbonyl protein contents) were investigated after 48-h incubation. Our results showed that H2O2/FeSO4 treatment induced a reduction in T lymphocyte proliferation, cytokine secretion and ATP levels associated to an evident intracellular oxidative stress, inflammatory profile and DNA damage. Addition of L1 at 100 µM was able to increase cell proliferation, IL-2, IL-4 and INFγ secretion and ATP contents and to reduce hydroperoxide and carbonyl protein contents, catalase activity and micronuclei number in lymphocytes under oxidative stress, with a partial protection. The [Cu(L1)] exhibited protective effects in T lymphocytes by inhibiting H2O2/FeSO4 - induced cell proliferation suppression, inflammatory status, ATP loss and oxidative stress generation, whatever the concentration used. In conclusion, in the situation of excessive oxidative stress, [Cu(L1)] treatment improved T lymphocyte proliferation, cytokine production, ATP contents and oxidant/antioxidant status. [Cu(L1)] could be effective at improving oxidative stress and T cell abnormalities.


Subject(s)
Copper/pharmacology , Free Radical Scavengers/pharmacology , Hydrazines/pharmacology , Lymphocyte Activation/drug effects , T-Lymphocytes/drug effects , Cells, Cultured , Cytokines/biosynthesis , Humans , Oxidative Stress/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
14.
J Transl Med ; 18(1): 452, 2020 11 30.
Article in English | MEDLINE | ID: covidwho-948411

ABSTRACT

BACKGROUND: Dysregulation of transcription and cytokine expression has been implicated in the pathogenesis of a variety inflammatory diseases. The resulting imbalance between inflammatory and resolving transcriptional programs can cause an overabundance of pro-inflammatory, classically activated macrophage type 1 (M1) and/or helper T cell type 1 (Th1) products, such as IFNγ, TNFα, IL1-ß, and IL12, that prevent immune switching to resolution and healing. The low molecular weight fraction of human serum albumin (LMWF5A) is a novel biologic drug that is currently under clinical investigation for the treatment of osteoarthritis and the hyper-inflammatory response associated with COVID-19. This study aims to elucidate transcriptional mechanisms of action involved with the ability of LMWF5A to reduce pro-inflammatory cytokine release. METHODS: ELISA arrays were used to identify cytokines and chemokines influenced by LMWF5A treatment of LPS-stimulated peripheral blood mononuclear cells (PBMC). The resulting profiles were analyzed by gene enrichment to gain mechanistic insight into the biologic processes and transcription factors (TFs) underlying the identified differentially expressed cytokines. DNA-binding ELISAs, luciferase reporter assays, and TNFα or IL-1ß relative potency were then employed to confirm the involvement of enriched pathways and TFs. RESULTS: LMWF5A was found to significantly inhibit a distinct set of pro-inflammatory cytokines (TNFα, IL-1ß, IL-12, CXCL9, CXCL10, and CXCL11) associated with pro-inflammatory M1/Th1 immune profiles. Gene enrichment analysis also suggests these cytokines are, in part, regulated by NF-κB and STAT transcription factors. Data from DNA-binding and reporter assays support this with LMWF5A inhibition of STAT1α DNA-binding activity as well as a reduction in overall NF-κB-driven luciferase expression. Experiments using antagonists specific for the immunomodulatory and NF-κB/STAT-repressing transcription factors, peroxisome proliferator-activated receptor (PPAR)γ and aryl hydrocarbon receptor (AhR), indicate these pathways are involved in the LMWF5A mechanisms of action by reducing LMWF5A drug potency as measured by TNFα and IL-1ß release. CONCLUSION: In this report, we provide evidence that LMWF5A reduces pro-inflammatory cytokine release by activating the immunoregulatory transcription factors PPARγ and AhR. In addition, our data indicate that LMWF5A suppresses NF-κB and STAT1α pro-inflammatory pathways. This suggests that LMWF5A acts through these mechanisms to decrease pro-inflammatory transcription factor activity and subsequent inflammatory cytokine production.


Subject(s)
Cytokines/metabolism , Inflammation/prevention & control , Leukocytes, Mononuclear/drug effects , Serum Albumin, Human/pharmacology , Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , COVID-19/pathology , Cells, Cultured , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation Mediators/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides , Lymphocyte Activation/drug effects , Molecular Weight , NF-kappa B/metabolism , Serum Albumin, Human/chemistry , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Transcription Factors/metabolism , COVID-19 Drug Treatment
15.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-917237

ABSTRACT

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Azetidines/administration & dosage , COVID-19 Drug Treatment , COVID-19/immunology , Macaca mulatta , Neutrophil Infiltration/drug effects , Purines/administration & dosage , Pyrazoles/administration & dosage , Sulfonamides/administration & dosage , Animals , COVID-19/physiopathology , Cell Death/drug effects , Cell Degranulation/drug effects , Disease Models, Animal , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Janus Kinases/antagonists & inhibitors , Lung/drug effects , Lung/immunology , Lung/pathology , Lymphocyte Activation/drug effects , Macrophages, Alveolar/immunology , SARS-CoV-2/physiology , Severity of Illness Index , T-Lymphocytes/immunology , Virus Replication/drug effects
16.
Immunity ; 53(4): 724-732.e7, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-710374

ABSTRACT

SARS-CoV-2 infection has emerged as a serious global pandemic. Because of the high transmissibility of the virus and the high rate of morbidity and mortality associated with COVID-19, developing effective and safe vaccines is a top research priority. Here, we provide a detailed evaluation of the immunogenicity of lipid nanoparticle-encapsulated, nucleoside-modified mRNA (mRNA-LNP) vaccines encoding the full-length SARS-CoV-2 spike protein or the spike receptor binding domain in mice. We demonstrate that a single dose of these vaccines induces strong type 1 CD4+ and CD8+ T cell responses, as well as long-lived plasma and memory B cell responses. Additionally, we detect robust and sustained neutralizing antibody responses and the antibodies elicited by nucleoside-modified mRNA vaccines do not show antibody-dependent enhancement of infection in vitro. Our findings suggest that the nucleoside-modified mRNA-LNP vaccine platform can induce robust immune responses and is a promising candidate to combat COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , RNA, Messenger/immunology , RNA, Viral/immunology , Viral Vaccines/administration & dosage , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Models, Animal , Furin/genetics , Furin/immunology , Humans , Immunity, Humoral/drug effects , Immunization/methods , Immunogenicity, Vaccine , Immunologic Memory/drug effects , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic , Viral Vaccines/biosynthesis , Viral Vaccines/genetics
17.
FEBS J ; 288(6): 1771-1777, 2021 03.
Article in English | MEDLINE | ID: covidwho-702279

ABSTRACT

Kawasaki syndrome (KS) is an acute vasculitis in children complicated by the development of heart disease. Despite its description over 50 years ago, the etiology of coronary artery disease in KS is unknown. High dose intravenous immunoglobulin is the most effective approach to reduce cardiovascular complications. It remains unclear why patients with KS develop coronary artery aneurysms. A subset of patients is resistant to immunoglobulin therapy. Given the heterogeneity of clinical features, variability of history, and therapeutic response, KS may be a cluster of phenotypes triggered by multiple infectious agents and influenced by various environmental, genetic, and immunologic responses. The cause of KS is unknown, and a diagnostic test remains lacking. A better understanding of mechanisms leading to acute KS would contribute to a more precision medicine approach for this complex disease. In the current viewpoint, we make the case for microbial superantigens as important causes of KS.


Subject(s)
Bacterial Toxins/immunology , Coronary Artery Disease/immunology , Enterotoxins/immunology , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/immunology , Superantigens/immunology , Child , Coronary Artery Disease/complications , Humans , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mucocutaneous Lymph Node Syndrome/complications , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
18.
Expert Opin Biol Ther ; 20(9): 1025-1031, 2020 09.
Article in English | MEDLINE | ID: covidwho-670937

ABSTRACT

INTRODUCTION: The globally rampant SARS CoV-2 pandemic requires novel medical strategies to control the severity of disease and death due to complications. Of the 15-20% patients that develop pulmonary symptoms, a sub-set develops an acute respiratory distress syndrome (ARDS) rapidly progressing into a critical condition. Marked elevation of cytokines/chemokines is observed with elevation of additional markers of inflammation, coagulation, and organ damage such as CRP, D-dimer, LDH, Ferritin and Troponin-I. This hyperinflammation leads to worsening of oxygen saturation due to pulmonary infiltration and exudation, organ damage, and dysfunction of coagulation pathway and may lead to multi-organ failure. AREAS COVERED: The role of anti-inflammatory monoclonal antibodies such as Itolizumab, in cytokine storm. EXPERT OPINION: Itolizumab, an anti-CD6 humanized IgG1 mAb, binds to domain-1 of CD-6 that is responsible for priming, activation, and differentiation of T-cells. Itolizumab significantly reduces T-cell proliferation along with substantial downregulation of the production of cytokines/chemokines. Approved for moderate to severe chronic plaque psoriasis in 2013 it is currently being studied for addressing COVID-19 related cytokine storm and its complications. This article reviews its use in COVID-19 infections; its dose, administration protocol, contra-indications, and safety in treating moderate-to-severe ARDS by preventing and treating the cytokine storm and its complications.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Antibodies, Monoclonal, Humanized/pharmacology , COVID-19 , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cytokines/antagonists & inhibitors , Cytokines/immunology , Humans , Lymphocyte Activation/drug effects , Lymphocyte Activation/physiology , Pandemics , SARS-CoV-2 , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Treatment Outcome
19.
Front Immunol ; 11: 1311, 2020.
Article in English | MEDLINE | ID: covidwho-646534

ABSTRACT

Chimeric antigen receptor T cell (CART) therapy, administration of certain T cell-agonistic antibodies, immune check point inhibitors, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and Toxic shock syndrome (TSS) caused by streptococcal as well as staphylococcal superantigens share one common complication, that is T cell-driven cytokine release syndrome (CRS) accompanied by multiple organ dysfunction (MOD). It is not understood whether the failure of a particular organ contributes more significantly to the severity of CRS. Also not known is whether a specific cytokine or signaling pathway plays a more pathogenic role in precipitating MOD compared to others. As a result, there is no specific treatment available to date for CRS, and it is managed only symptomatically to support the deteriorating organ functions and maintain the blood pressure. Therefore, we used the superantigen-induced CRS model in HLA-DR3 transgenic mice, that closely mimics human CRS, to delineate the immunopathogenesis of CRS as well as to validate a novel treatment for CRS. Using this model, we demonstrate that (i) CRS is characterized by a rapid rise in systemic levels of several Th1/Th2/Th17/Th22 type cytokines within a few hours, followed by a quick decline. (ii) Even though multiple organs are affected, small intestinal immunopathology is the major contributor to mortality in CRS. (iii) IFN-γ deficiency significantly protected from lethal CRS by attenuating small bowel pathology, whereas IL-17A deficiency significantly increased mortality by augmenting small bowel pathology. (iv) RNA sequencing of small intestinal tissues indicated that IFN-γ-STAT1-driven inflammatory pathways combined with enhanced expression of pro-apoptotic molecules as well as extracellular matrix degradation contributed to small bowel pathology in CRS. These pathways were further enhanced by IL-17A deficiency and significantly down-regulated in mice lacking IFN-γ. (v) Ruxolitinib, a selective JAK-1/2 inhibitor, attenuated SAg-induced T cell activation, cytokine production, and small bowel pathology, thereby completely protecting from lethal CRS in both WT and IL-17A deficient HLA-DR3 mice. Overall, IFN-γ-JAK-STAT-driven pathways contribute to lethal small intestinal immunopathology in T cell-driven CRS.


Subject(s)
Coronavirus Infections/pathology , Cytokine Release Syndrome/drug therapy , Interferon-gamma/genetics , Interleukin-17/genetics , Janus Kinase Inhibitors/therapeutic use , Pneumonia, Viral/pathology , Pyrazoles/therapeutic use , Animals , COVID-19 , Cells, Cultured , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/prevention & control , Cytokines/blood , Cytokines/immunology , HLA-DR3 Antigen/genetics , Intestine, Small/immunology , Intestine, Small/pathology , Lymphocyte Activation/drug effects , Mice , Mice, Knockout , Nitriles , Pandemics , Pneumonia, Viral/drug therapy , Pyrimidines , T-Lymphocytes, Helper-Inducer/immunology
20.
In Vivo ; 34(3 Suppl): 1593-1596, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-536995

ABSTRACT

The Covid-19 pandemic is a world-wide crisis without an effective therapy. While most approaches to therapy are using repurposed drugs that were developed for other diseases, it is thought that targeting the biology of the SARS-CoV-2 virus, which causes Covid-19, can result in an effective therapeutic treatment. The coronavirus RNA cap structure is methylated by two viral methyltransferases that transfer methyl groups from S-adenosylmethionine (SAM). The proper methylation of the virus depends on the level of methionine in the host to form SAM. Herein, we propose to restrict methionine availability by treating the patient with oral recombinant methioninase, aiming to treat Covid-19. By restricting methionine we not only interdict viral replication, which depends on the viral RNA cap methyaltion, but also inhibit the proliferation of the infected cells, which have an increased requirement for methionine. Most importantly, the virally-induced T-cell- and macrophage-mediated cytokine storm, which seems to be a significant cause for Covid-19 deaths, can also be inhibited by restricting methionine, since T-cell and macrophrage activation greatly increases the methionine requirement for these cells. The evidence reviewed here suggests that oral recombinant methioninase could be a promising treatment for coronavirus patients.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Carbon-Sulfur Lyases/therapeutic use , Coronavirus Infections/drug therapy , Methionine/metabolism , Pneumonia, Viral/drug therapy , RNA Caps/drug effects , RNA Processing, Post-Transcriptional/drug effects , RNA, Viral/drug effects , Administration, Oral , Antiviral Agents/administration & dosage , Bacterial Proteins/administration & dosage , Bacterial Proteins/therapeutic use , Betacoronavirus/physiology , COVID-19 , Carbon-Sulfur Lyases/administration & dosage , Clinical Trials as Topic , Coronavirus Infections/complications , Coronavirus Infections/immunology , Cytokine Release Syndrome/prevention & control , Humans , Lymphocyte Activation/drug effects , Macrophage Activation/drug effects , Meta-Analysis as Topic , Methylation/drug effects , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pseudomonas putida/enzymology , Recombinant Proteins/administration & dosage , Recombinant Proteins/therapeutic use , S-Adenosylmethionine/metabolism , SARS-CoV-2 , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL